(a^2+b^2-4c^2)^2-4a^2b^2

2 min read Jun 16, 2024
(a^2+b^2-4c^2)^2-4a^2b^2

Factoring the Expression (a^2 + b^2 - 4c^2)^2 - 4a^2b^2

The expression (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 can be factored using the "difference of squares" pattern. Here's how:

Understanding the Difference of Squares Pattern

The difference of squares pattern states that: x^2 - y^2 = (x + y)(x - y)

Applying the Pattern to Our Expression

  1. Recognize the Squares:

    • (a^2 + b^2 - 4c^2)^2 is the square of the expression (a^2 + b^2 - 4c^2).
    • 4a^2b^2 is the square of 2ab.
  2. Substitute and Factor:

    • Let x = (a^2 + b^2 - 4c^2)
    • Let y = 2ab

    Now we have: x^2 - y^2 = (x + y)(x - y)

    Substitute back: (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 = [(a^2 + b^2 - 4c^2) + 2ab][(a^2 + b^2 - 4c^2) - 2ab]

  3. Simplify: (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 = (a^2 + b^2 + 2ab - 4c^2)(a^2 + b^2 - 2ab - 4c^2)

Final Factored Form

Therefore, the factored form of (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 is (a^2 + b^2 + 2ab - 4c^2)(a^2 + b^2 - 2ab - 4c^2).

Related Post